About Me

My photo
Bangi, Selangor, Malaysia
Hello my name is Intan. This is my blog for an assignment purpose. Not for real. Thank you for following and keep updated.
For a successful technology, reality must take precedence over public relations, for Nature cannot be fooled. ~Richard P. Feynman

Sunday, April 24, 2011

Today Technology




An organic light emitting diode (OLED) is a light-emitting diode (LED) in which the emissive electroluminescent layer is a film of organic compounds which emit light in response to an electric current. This layer of organic semiconductor material is situated between two electrodes. Generally, at least one of these electrodes is transparent. OLEDs are used in television screens, computer monitors, small, portable system screens such as mobile phones and PDAs, watches, advertising, information, and indication. OLEDs are also used in light sources for space illumination and in large-area light-emitting elements. Due to their early stage of development, they typically emit less light per unit area than inorganic solid-state based LED point-light sources. An OLED display functions without a backlight. Thus, it can display deep black levels and can be thinner and lighter than liquid crystal displays. In low ambient light conditions such as dark rooms, an OLED screen can achieve a higher contrast ratio than an LCD using either cold cathode fluorescent lamps or the more recently developed LED backlight. There are two main families of OLEDs: those based upon small molecules and those employing polymers. Adding mobile ions to an OLED creates a Light-emitting Electrochemical Cell or LEC, which has a slightly different mode of operation. OLED displays can use either passive-matrix (PMOLED) or active-matrix addressing schemes. Active-matrix OLEDs (AMOLED) require a thin-film transistor backplane to switch each individual pixel on or off, and can make higher resolution and larger size displays possible.

No comments:

Post a Comment